RECONSTRUCTING THE CHARACTER STATES
OF ANCESTORS: A LIKELIHOOD PERSPECTIVE
ON CLADISTIC PARSIMONY

Introduction

Although the justification for using cladistic parsimony to infer phy-
logenetic trees has been extensively discussed, much less attention has
been paid to the use of cladistic parsimony to reconstruct the character
states of the ancestral species postulated by an inferred phylogenetic tree.
These two problems differ in terms of both their inputs and their outputs,
as shown in the following table. In the former, one begins with data on the
character states of extant species and tries to find the best supported phy-
logenetic tree. In the latter, one begins with the tree that is most firmly
supported by characteristics C;, C,, . . . C,_; one then takes some new
characteristic C, and records the character states of C, that attach to the
tree’s interior nodes, which represent common ancestors. In both cases,
cladistic parsimony solves the problem by finding the hypothesis that
requires the fewest changes in character state that are needed to explain
the observations.

Table

Input Output
Problem 1: Inferring a Data on species A, B, A B C
tree topology and C
Problem 2: Inferring P10 0 11 06 0
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Perhaps the reason the second question has been addressed much less
often is the belief that the justification for using cladistic parsimony must
be the same in both problems, so there is no point in examining the second
question on its own. This may be true, but at present it can only be
regarded as a conjecture, given how fragmentary our understanding of the
two inference problems is. Another reason the first problem has received
more attention is the principle of first things first. The first problem is
more fundamental—in the first, one infers a tree; in the second, one uses
an inferred tree to solve a further problem.2 In the present paper, I propose
to address the less fundamental problem. The results, I think, are interesting.

To discuss the justification for using cladistic parsimony in either
inference problem, one must consider what the use of that methodology
presupposes about the evolutionary process. Parsimony is fundamentally
a comparative principle. It doesn’t tell you whether to accept or reject a given
hypothesis; rather, it says whether one hypothesis is better supported than
another. For this reason, the basic question about parsimony’s justification
concerns what must be true of the evolutionary process for the following
biconditional to be correct:

(QE} For any hypotheses H! and H2 and any data set D, H1 is more
parsimonious than H2 (relative to D) if and only if H1 is better
supported by D than H2 is.

(OE} says that a parsimony ordering of a set of hypotheses and a support
ordering of that set will be erdinally equivalent. It is hard to know how to
evaluate (OE) until some clarification is provided of what “support”
means. One possibility that has been of interest is that support should be
understood in terms of the technical concept of likelihood. The likelihood
of a hypothesis H, relative to the observations O, is the probability Pr(O |
H) that H confers on O. Don’t confuse the likelihood of H with the prob-
ability Pr(H | O} that O confers on H. The likelihood principle (Edwards
1971, Royall 1997) provides one way to make (OE) more precise:

(LP) For any hypotheses H1 and H2 and any data set D, D supports H1
more than D supports H2 if and only if Pr(D | Hi) > P(D | H2).

If we accept the likelihood principle, the question of whether we should
use parsimony to interpret the evidence reduces to the question of whether
more parsimonious explanations are more likely.
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This latter question can be answered only if we are prepared to
describe a model of the evolutionary process on which we will base our
likelihood assessments. For example, if we are considering the first problem
mentioned above—that of inferring a phylogenetic tree—we must recognize
that a tree topology does not, by itself, confer a probability on the character
states of tip species. One must say, in addition, what the probabilities are
of different types of change and stasis in the tree’s interior. This point does
not change if we merely ask which of two topologies confers a higher
probability on the observations. Whether we want to know the point value
of a topology’s likelihood, or, more modestly, whether one topology is more
likely than another, the relevant principle is this: no model, no inference.

If there were a model of the evolutionary process that we could accept,
we could use that model to determine whether parsimony and likelihood
must coincide. By ‘model’ I don’t mean some vague statement like “natural
selection has been important.” Rather, I mean a specification of the quan-
titative rules of change that govern different traits in different branches of
a phylogenetic tree. Unfortunately, biologists who don’t already know what
the true topology is for a group of taxa are also unlikely to know which
process model they should accept.

What is actually known about the relationship of parsimony and like-
lihood in the context of the first problem mentioned above—that of evaluating
tree topologies in the light of data on tip taxa? Penny er al. (1994} and
Tuffley and Steel (1997) identified a specific model of the evolutionary
process that suffices to render parsimony and likelihood ordinally equiva-
lent.? One important feature of this model is that it says that each character
obeys a symmetrical rule of evolution; if the character has just two states,
this means that the probability of the character’s evolving from state i to
state j is the same as its probability of evolving from j to i. This means that
natural selection and other directional forces are entirely absent; the process
described is one of pure drift. Does this mean that cladistic parsimony
makes sense only in connection with data on characters that evolve by drift?

The answer to this question is NO. The fact that a set of assumptions
suffices for parsimony and likelihood to go hand-in-hand does not show
that those assumptions are necessary for that relation to obtain (Sober
1988). This, I think, is the most important caveat to bear in mind when
considering questions about the justification of cladistic parsimony. The
fact that an investigator makes an assumption in analyzing the logic of
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parsimony arguments does not mean that parsimony depends for its
validity on that assumption.

Rather than specifying a model that suffices for parsimony and like-
lihood to agree, the investigator might try to construct a2 model that suffices
for them to disagree. If a model ensures that the most parsimonious ex-
planation of the data will not be the one with maximum likelihood, what
should we conclude? If we accept the likelihood principle (LP), we face a
choice. Either we must reject the process model, or we must reject the use
of cladistic parsimony. That is, the use of parsimony presupposes that the
specified process model is false. In the search for parsimony’s presuppo-
sitions, it is models that make parsimony fail that are significant, not models
that make it succeed.

Something like this strategy is the one pursued by Felsenstein
(1978). Felsenstein is not mainly concerned in that paper to show that
parsimony and likelihood disagree, although he does briefly address that
question at the end. His main objective is to describe an example in which
parsimony is statistically inconsistent—the accumulation of more and
more data guarantees that parsimony will converge on a false topology.
What is true in this example is (roughly) that there is a model M of the
evolutionary process that has the following property: as the data set is
made large, it becomes increasingly certain that T will be less parsimo-
nious than T” even though Pr(Data | T & M) > Pr(Data | T" & M), where
T is the true topology and T” is a false topology. In the limit of large data,
parsimony converges on T' while likelihood converges on T; parsimony
and likelihood disagree about which topology is best, and likelihood gets
the answer right (provided that it uses the right process model M). This
suggests that parsimony assumes that the process model M is false.

One feature of Felsenstein’s model is that it assumes that branches
differ dramatically in their transition probabilities. On one branch, the
probability that a character will evolve from state 0 to state 1 is high, but
on another branch that has the same duration, the probability is low. Does
it follow that parsimony assumes that branches cannot differ in their tran-
sition probabilities? Again, the answer is No. Felsenstein’s model M
includes several assumptions. For example, he also assumes that all char-
acters on the same branch evolve according to exactly the same rules.
What is true is that the conjunction of these process assumptions suffices
for parsimony and likelihood to part ways. If we accept the likelihood
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principle (LP), then the use of parsimony in the problem that Felsenstein
addresses presupposes that this conjunction must be false. However, we
should not lose sight of the simple logical point that a conjunction can be
false without each of its conjunct’s being false. Not all of Felsenstein’s
process assumptions can be true, if parsimony and likelihood are to coincide,
but this doesn’t mean that all must be false. So it does not follow from
Felsenstein’s example that parsimony assumes that simultaneous branches
must follow the same rules of evolution.

In summary, the problem of justifying parsimony in likelihood terms
and the problem of using likelihood to uncover the presuppositions of
parsimony can be clarified by considering the following two conditionals:

« If X, then parsimony and likelihood are ordinally equivalent.
« If parsimony and likelihood are ordinally equivalent, then Y.

Two comments are relevant to the first conditional. First, a plausible process
model X that makes the first conditional true will provide parsimony with
a likelihood justification. Second, an implausible model X that makes the
first conditional true does nothing to undermine parsimony. Moving on to
the second conditional, we can say that any process claim Y that makes this
conditional true is a presupposition of parsimony (assuming that the likeli-
hood principle is correct). If Y is implausible, this second conditional provides
a likelihood criticism of parsimony.

The presuppositions of parsimony, then, are the conditions (Y) that
are necessary for parsimony and likelihood to coincide. The fact that condition
(X} suffices for this relation to obtain does not show that parsimony assumes
that X is true. Still, these two considerations, of necessity and sufficiency,
come together in an interesting way: If X suffices for parsimony and like-
lihood to be ordinally equivalent, then Z is not a presupposition of
parsimony, if X does not entail Z. If X entails ordinal equivalence, X must
entail whatever ordinal equivalence entails. This logical point means that
the result of Penny et al. (1994) and Tuffley and Steel (1997) has great sig-
nificance. The model they construct does not entail that change is rare.
Hence it is false that parsimony assumes that change is rare. The sufficient
condition that these investigators have identified provides a litmus test for
claims about parsimony’s presuppositions, but the test is one-sided. If their
sufficient condition does not entail Z, then Z is not an assumption of
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parsimony; but if their sufficient condition dees entail Z, Z may or may not
be an assumption.

I won’t pursue the problem of how likelihood and parsimony are
related as methods for inferring tree topologies any further, but will now
turn to the main topic of this paper. How are parsimony and likelihood
related as methods for inferring the character states of ancestors in a tree
that one already has reason to accept? The bare bones of this problem are
depicted in Figure 1. Species C is the common ancestor of A and B; these
descendants are observed to be in character states o and B, respectively.
Given these observations, which assignment of character state to C is
most parsimonious, and which has the highest likelihood? We want to see
when parsimony and likelihood agree and when they disagree, both for di-
chotomous and for quantitative characters. As before, the issue is ordinal
equivalence.

A=q B=f

C=?
Figure 1

I should mention that this skeleton problem—two descendants and
one ancestor—does not capture the full scope of the problem of assigning
character states to ancestors. Polytomies aside, the general problem
concerns a fully bifurcating tree that has n terminal taxa—which character
states should one assign to its (n— 1} interior nodes? I won’t try to address
the general problem here, although I hope it is intuitive that the simple
problem I'll address is a “building block” in the more general setting.
Still, one has to be cautious. For example, consider our two-descendant
problem when the character comes in two states, 0 and 1. Parsimony
favors setting C = 1, if A=1 and B = 1. However, it isn’t always true in
the wider setting of a tree with n terminal taxa that this is the assignment
that is globally most parsimonious. For consider the tree depicted in
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Figure 2. In this tree, A and B are the two terminal taxa in state 1; the
(globally) most parsimonious assignment of character state to their most
recent common ancestor is 0. Thus, our simple two-descendant/one-
ancestor problem may be a “building block” for the more general
problem, but there are subtleties that arise when one moves from the
simple problem to problems that are more complex.

1 ¢ 0 ¢ 1 ¢ 0 0
///' s

X / /
0 \< // /
/ // /

/ ,/ /

\/ / /

Figure 2

Dichotomous Characters

There are two problems to consider. When A =1 and B = 1, the most
parsimonious assignment to Cis C = 1. And when A=1 and B = 0, the
two assignments to C, C = 0 and C = 1, are equally parsimonious. The
question is—what must be true of the processes in the lineages leading to
A and to B, if C = 1 is to be the maximum likelihood assignment in the
first problem, and what must be true for the two assignments to C in the
second problem to have equal likelihoods? These problems, it turs out, have
different solutions.

Before we get to these solutions, however, I have to say how I'll un-
derstand the processes of character change and stasis that may occur in a
lineage. The slogan ne model, no inference applies to the present problem
of inferring ancestral character states no less than it applies to the problem
of inferring phylogenetic trees. And in conformity with my previous ad-
monitions to not confuse the assumptions of an investigator with the
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assumptions of a method, let me emphasize that the following model is
something f will use to frame the problem: I do not claim that parsimony pre-
supposes that this model is correct.

What I'll use here comes from the standard theory of stochastic
processes (Parzen 1962). We divide a lineage into a large number of brief
temporal intervals. In each, there is a probability u that the lineage will
change from state 0 to state 1; and there is a (possibly different) probabil-
ity v that the lineage will change from state | to state 0. Each of these
instantaneous probabilities are assumed to be small (at least less than 0.5).
They allow us to describe the probability that a lineage will end in state j,
given that it starts in state i (i,j = 0,1), when the lineage is N units of time
in duration.4 I will use the notation Pry(i->}) to represent these lineage
transition probabilities:

Pry0— D =w/u+v) — W+ v)}{I—u— v
Prfl—oly=u/u+ v} + [vu + v)}(1— u — v)N
Pry(1—0) = vl(u + v) — [v/(u + v)J(f— u — vN
Pry(0—0) = v/{u + v} + [ufu + v)}J(1 — u — v)¥

There is no assumption here as to whether u = v. If u = v, the lineage
undergoes an unbiased process of drift. If u>v, there is a directionality or
bias in the evolutionary process, favoring state | over state 0. One
possible source of this bias is natural selection; however, mutation
asymmetry and migration also can induce a directional bias.

When N is very small, the two probabilities of stasis Pr(i—i) are
close to unity and the two probabilities of change Pry(i—j) are close to 0.
When N is infinite Pry(i—j) = Pry(j—7); the lineage has the same proba-
bility of ending in state j, regardless of what the state was in which the
lineage began. Thus, when lineages have very short duration, their initial
conditions virtually determine their final state and the relationship of u
and v doesn’t matter; when lineages are very old, it is the processes that
occur during the lineage’s duration (represented by u and v) that matter;
the initial condition is forgotten.

In summary, the model I am using makes no assumption about drift
versus selection, and it also takes no stand on whether the lineage is young
or old. It also is neutral on whether the process in the lineage leading from
common ancestor C to descendant A is the same as the process in the
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lineage leading from C to B. Each lineage has its own values for u and v.
This model, I think, is pretty permissive.

It is a property of this model that a certain backwards inequality (Sober
1988) obtains: Pry(j—j) > Pry(i—j) if N is finite; an equality obtains when
N is infinite. This inequality holds for all values of u, v, and (finite} N. The
backwards inequality does not say that stasis is more probable than
change; don’t confuse the backwards inequality with the forwards in-
equality Pri(j—j) > Pry(j—i). An instance of this forwards inequality
[e.g., that Pr(1—1) > Pr(1—-0)] will be true for some values of u, v, and
N, but not for others. The backwards inequality says that if a descendant
is in state j, that outcome is made more probable by the hypothesis that its
ancestor was in state j than by the hypothesis that the ancestor was in state
i. The backwards inequality provides a solution to the first of our problems
about dichotomous characters:

Theorem 1: If A=iand B =i (i =0,1), then C =1 is the assign-
ment of maximum likelihood.5

As noted before, Pr(i—j) and Pr(j—j) get closer together, the more
time there is in a lineage. This means that when A = 1 and B = 1, the like-
lihoods of C = 1 and C = 0 get closer together, the more ancient their most
recent common ancestor is. C = 1 is always more likely, but the degree of
its superiority depends on time. This quantitative effect is not reflected in
the parsimony analysis, which registers only the qualitative point that if A
=1and B = 1, then C = 1 is more parsimonious than C = 0, no matter how
Iong ago their most recent common ancestor existed.

Matters become more complicated when we move to our second
problem. When A = 1 and B =0, the two possible assignments of character
state to C are equally parsimonious. When will these two assignments
have the same likelihood? That is, when will it be true that
Pr,(0—1)Prg(0—0) = Pry,(1-51)Prg(1—50)? The subscripts A and B
represent which of the two lineages the transition probability describes. It
is helpful to rewrite this equality as

Pry0—1)  Pry(150)

Pr,(1—1) Prg(0—0) .
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Two sufficient conditions for this equality can be stated:

Theorem 2a: If A=1 and B =0, then C = | and C = 0 are equally
likely if the two lineages are infinitely old or if u, = vy and v, =
Ug.

The second disjunct means that if one lineage experiences a process that
is biased in one direction, the other must experience a process whose bias
is equal and opposite. For example, if the lineage leading to A experiences
a selection process that favors trait 1 over trait 0 by a certain degree
(because uy > v,), then the lineage leading to B must have the same quan-
titative bias favoring trait O over trait 1 (because ug < vg).

Another sufficient condition for likelihood and parsimony to
coincide can be obtained if we assume that the process at work in the
lineage leading to A is the same as the process in the lineage leading to B:

Theorem 2b: If A = | and B = 0 and the lineages are character-
ized by the same pair of values foruand v,thenC=1and C =0

are equally likely if and only if the lineages are infinitely oid or u
= V.

What one can't have, if likelihood and parsimony are to agree, is a single
selection process (or any other biased process in which u # v) that occurs
in both lineages, where those lineages have finite duration.

Quantitative Characters

Suppose that the descendant species A and B are each scored for
some quantitative character, with the result that A = 40 and B = 40. The
most parsimonious estimate of the state of their common ancestor C is C
= 40. What must be true of the evolutionary processes in the two lineages
for C = 40 to be the assignment of maximum likelihood?

To answer this question, we must provide a model of the evolution-
ary process, analogous to the one used in the previous section, but suitable
for describing quantitative characters. Let’s begin by setting limits on the
values of the character in question; suppose it can’t go below zero or
above 100. We can think of u as the probability of the lineage’s increas-
ing its character state by a very small amount during a brief interval of
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time, and v as the probability of the lineage’s reducing its value during
that instant. However, in contrast to what is true in the case of dichoto-
mous characters, it is obvious that u and v cannot remain constant over the
full range of the lineage’s possible states; for example, u must have a
value of zero when the lineage is in state 100, though of course it can have
a nonzero value when the lineage has a value less than 100. In addition,
consider the possibility that the lineage is evolving towards a stable equi-
librium; perhaps a trait value of 75 is optimal, and selection is pushing the
lineage towards that value. This means, first of all, that u > v when the
lineage’s trait value is less than 75, but that u < v when the population has
a value greater than 75. In addition, the degree to which u > v must decline
as the population approaches 75 from below. Thus we need to think of the
stochastic model for a lineage as having different values of u and v
attaching to the different character states the lineage might occupy.

Despite these complications, the theory for continuous characters is
similar to the theory for dichotomous characters. For example, suppose a
biased process (like natural selection) is pushing a lineage towards a
single attractor state—for example, a value of 75. Then the lineage’s prob-
ability of reaching that equilibrium is greater, the closer its initial state is
to 75. This is an analog of the backwards inequality for continuous char-
acters.” Similarly, this equilibriumn has a higher probability of being
attained, the more time there is in a lineage. When the lineage has a very
short duration, stasis is almost certain; as the lineage is given a longer
duration, the evolutionary process takes over and the initial condition
recedes in its impact on the lineage’s final state. In the limit of infinite
time, the initial condition is entirely forgotten and the lineage’s probabil-
ity of attaining a given end state is the same, regardless of what the state
was in which the lineage began.

How should we conceptualize a pure drift process for continuous
characters? With very little time, the expected value of the end state is
tightly peaked around the lineage’s inittal condition. As time goes on, this
low variance bell curve is squashed down. With infinite time, there is a flat
distribution—each character state has the same probability.

As was true in the model for dichotomous characters, the present
model is not particularly restrictive. The processes at work may be biased
or unbiased; time may be short or long; and the two lineages may evolve
according to the same rules, or according to different rules.
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Let us now consider our first problem: if A = 40 and B = 40, what
character state should we assign to the common ancestor C? The most par-
simonious assignment is C = 40. Under what conditions is this also the
assignment of maximum likelihood? Since the backwards inequality for
dichotomous characters sufficed to entail Theorem 1, one might expect the
model for continuous characters to have the unconditional consequence
that C = 40 has maximum likelihood. This is not correct. For example, if
directional selection is pushing both lineages towards the attractor value
of 50, then the maximum likelihood assignment to C will be fess than 40;
how much less than 40 the maximum likelihood value is depends on how
long the lineage has been evolving and on how strong the directional force
is. Nonetheless, two simple sufficient conditions can be specified for when
C = 40 is the assignment of maximum likelihood:

Theorem 3a: If A = 40 and B = 40 and the same evolutionary
process is at work in the two lineages, then C = 40 is the
maximuin likelthood value if and only if the process is one of
pure drift or 40 is the single attractor state towards which the di-
rectional process at work in the two lineages is pushing.

If we drop the assumption of “lineage homogeneity,” a further sufficient
condition can be specified:

Theorem 3b: i A =40 and B = 40, then C = 40 is the maximum
likelihood value if the one lineage has a directional force pushing
it towards an attractor whose trait value is 40 + x, while the other
lineage has a directional force of equal strength pushing it
towards an attractor whose trait value is 40 — x.

For example, if selection favors a trait value of 50 in the lineage leading
to A and a value of 30 in the lineage leading to B, then (assuming that the
two forces are of equal magnitude) the most likely state for C is C = 40,
The next problem to consider arises when A and B are observed to
have different values. For example, if A = 30 and B = 50, what value
should we assign to C? In the previous questions we have investigated, it
was obvious what parsimony recommended. The present problem is a bit
different. It is true that assigning C = 40 is one way to minimize the rotal
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amount of change that took place in the two lineages, but the same is true
for any other assignment of value to C, so fong as it is between 30 and 50.
The idea of cladistic parsimony is generally taken to recommend the as-
signment of C = 40, but why should this haifway point be regarded as the
best estimate? One answer to consider is that it minimizes the amount of
squared change; 102 + 102 = 200, while (10 — x)2 + (10 + x)2 = 200 + 2x2.
However, the question then needs to be faced of why parsimony shouid
minimize squared change rather than minimize fotal change. It is hard to
see how this question can be answered without considering a process
model and its probabilistic properties.8

As one might expect, the maximum likelihood assignment to C isn’t
always C = 40, but it is under certain process assumptions:

Theorem 4a: If A = 30 and B = 50 and the same evolutionary
process is at work in the two lineages, then C = 40 is the
maximum likelihood value if and only if the process is one of
pure drift or 40 is the single attractor towards which the direc-
tional process at work in the two lineages is pushing.

As before, if we drop the assumption of lineage homogeneity, a further
sufficient condition can be specified:

Theorem 4b: If A = 30 and B = 50, then C = 40 is the maximum
likelihood value if the lineage leading to A has a directional force
pushing it towards an attractor whose trait value is 30 — x while
the B lineage has a directional force of equal strength pushing it
towards an attractor whose trait value is 50 + x.

Notice that Theorems 4a and 4b leave room for the fact that C = 40 may
not be the maximum likelihood solution. For example, if both lineages ex-
perience a strong directional force pushing them towards a global attractor
of 60, the maximum likelihood value of C will be less than 40; indeed, if
the force is strong enough, it may be less than 30.9

Testing Adaptive Hypotheses

Hypotheses about adaptation, and about other evolutionary processes,
make claims about the causal processes at work in lineages. This suggests
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that testing these hypotheses requires one first to ascertain which changes
have occurred in lineages, and then see whether they are of the sort
predicted by the adaptive hypothesis. For example, if the adaptive hy-
pothesis says that character state 1 is selectively advantageous over
character state O in some clade, one wants to know whether changes from
0 to 1 have occurred more frequently than changes in the opposite
direction. The same question, differently formulated, is whether lineages
maintain the | state more often than they maintain the O state.

The problem is that we do not observe changes in lineages. Rather,
what we observe, in the first instance, are the character states of extant
species. Once we infer a tree topology for these species, we can say that
what we observe are the character states of tip species. The point is that
we do not observe the events that occur in the tree’s interior. How, then, are
we to test hypotheses about the processes that occurred in that interior?

A natural suggestion is to use cladistic parsimony to reconstruct the
character states of the ancestors in the tree. These inferred character states
then have implications about the pattern of stasis and change that occurred
in the tree’s interior; one then can ask whether these events confirm or dis-
confirm the adaptive hypothesis. If cladistic parsimony as a method for
reconstructing ancestral character states made no assumptions about the
evolutionary process, this procedure would be unobjectionable. But the

take-home message of our previous discussion is that this is not the case.1¢

As an example of the present problem, suppose we know that the X
values of the species we are considering evolved by a random drift
process. The question is whether species change their Y values as adaptive
responses to those X values. The adaptive hypothesis we wish to test
specifies an optimality line, which represents the optimal Y value for each
X value; the hypothesis asserts that once species have their X values
shifted at random, they then evolve in the direction of the optimality line.
Notice that the adaptive hypothesis does not assert that extant species are
optimal or even that they are close to optimal. Rather, the modest claim is
that natural selection has acted to increase the adaptive fit of Y values to
X values.

We observe the X and Y values of species A and B. What X and Y
values should we assign to their most recent common ancestor C? Once
we have made this assignment, we can assess whether the two lineages
have moved in the direction of the optimality line. Figure 3 represents
three possible assignments of X and Y values to the common ancestor.
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They agree that the common ancestor should be assigned an X value that
is intermediate between the observed X values of A and B. This is the as-
signment of maximum parsimony, and it also is the assignment of
maximum likelihood, given that the X values evolved by random drift
(Theorem 4a).

Y
C3

Y

* B

& C2
' i
i Opt

C1

Figure 3

Which Y value should we assign to the common ancestor? Figure 3
represents three possible choices—Cl1, C2, and C3. If C1 is true, both
lineages evolved away from the optimality line. If C2 is correct, one line
evolved towards the optimality line and the other away. If C3 is right, both
lineages evolved towards the optimality line. These three possibilities cor-
respond to three different verdicts concerning the adaptive hypothesis. If
Cl1 is correct, we have two pieces of evidence against the adaptive hy-
pothesis. If C2 is correct, we have one pro and one con. And if C3 is right,
we have two pieces of evidence that confirm the adaptive hypothesis. C2
happens to be the most parsimonious assignment. But why does this show
that C2 is the best estimate? After all, if the adaptive hypothesis is true,
C3 is the most likely assignment of the three, whereas if Y evolved by
random drift C2 would be the likeliest estimate. Thus the maximum like-
lihood estimate of the common ancestor’s Y-value cannot be ascertained
independently of saying whether the adaptive hypothesis is correct. This
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illustrates the point that parsimony cannot be regarded as a neutral and pre-
suppositioniess device for inferring ancestral character states (Cunningham
1999).

The situation would be different, if A and B were sitting on the opti-
mality line. As Figure 4 illustrates, the lineage leading to A and the lineage
leading to B both move in the direction of the optimality line, regardless
of whether C1, C2, or C3 is taken to be the best estimate of the common
ancestor’s character states. It happens that C2 is the most parsimonious as-
signment. But from the point of view of testing the adaptive hypothesis, it
doesn’t matter whether one uses this or one of the other assignments.

Y c3
Opt
g Y
C2
T A
Ci
X
Figure 4

We have arrived at a dilemma. Whether parsimony and likelihood agree
about which character states should be assigned to ancestors depends on
which evolutionary processes are under way. For those who regard parsimony
as a first principle that requires no justification, this result does not matter.
But for those wheo think that parsimony is justified only to the extent that
it coincides with likelihood, it must. From a likelihood point of view, we
can’t test adaptive hypotheses by using parsimony to reconstruct the
character states of ancestors. The parsimonious reconstruction embodies
assumptions about the evolutionary process, and so it cannot be viewed as
a neutral vehicle for testing hypotheses about that process. What would be
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highly desirable is a procedure for testing adaptive hypotheses that does
not require the estimation of ancestral character states; that, however, is a
topic for another occasion (Orzack and Sober 2001).

Elliott Sober
University of Wisconsin at Madison
London School of Economics and Political Science

NOTES

1. My thanks to Thomas Hansen and Mike Steel for useful comments and to the
National Science Foundation (SES—9906997) for financial support.

2. If using parsimony to choose a tree topology required one to infer the character
states of the ancestors postulated by that tree, the two problems would not be separable, in
that the first would subsume the second. Although the use of parsimony to choose a tree is
sometimes described in this way (see, for example Lewis, 1998, p. 138), this is a mistake.
Finding a tree topology involves calculating what the minimum number of changes would
be if the tree were correct; it is not required that one think that this minimum is the actual
number of changes. This point is relevant to discussions of the circumstances under which
parsimony will be statistically consistent. It is sometimes claimed that parsimony (as a
method for inferring a tree topology) can be expected to be inconsistent because the
number of parameters one must estimate grows with the number of characters in one’s data
set, since for each new character, one has to infer the state of that character that each
ancestor has.

The mistake is analogous to the following. It is known that maximum likelihood es-
timation is statistically consistent in the context of estimating the mean in a normal
population. The sample mean is the maximum likelihood estimate of the population mean,
and the sample mean approaches the population mean as the sampie is increased in size.
But suppose someone doubted this claim of convergence on the ground that each new ob-
servation requires a new computation—each time you sample a new individual you have
to recompute the sample mean. The point about computation is correct, but this does not
mean that the parameters one is estimating grow in number; there is just one of them—the
population mean.

3. As far as T know, this is the only model yet discovered that renders parsimony and
likelihood ordinally equivalent as methods for inferring tree topologies. Goldman (1990)
describes a model that renders parsimony and likelthood equivalent, but for a slightly
different problem. The hypotheses he evaluates are tree topologies with character states
specified for all interior nodes. For discussion of the difference between these two
problems, seec Sober (1988, pp. 150-66) and Steel and Penny (2000).

4. This is the model used in Sober (1988) and in Pagel (1994).

5. Pagel (1999) uses a method for deriving maximum likelihood estimates of ancestral
character states that conflicts with this result. To evaluate the likelihoods of C=0and C =
1, given the observation that A = 1 and B = 1, Pagel compares the likelihoods of two con-
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Jjunctive hypotheses: (C = 0 and Xy} and (C = | and X}, where X; specifies the values of
the branch transition probabilities that maximize the likelihood of C = i. X, says that
Pr(0—1) = I and X asserts that Pr(1 1) = 1. Since the two conjunctions have the same
likelihood (= 1.0}, Pagel’s procedure concludes that the data do not discriminate between
the two hypotheses about the ancestor’s character state. His analysis would be the same if
there were twenty descendants, and not just two, all in the same state.

Pagel’s analysis and my own differ because I am not estimating branch transition
probabilities: rather, I am identifying the range of values in parameter space that makes C
= 1 the assignment of maximum likelihood. Assuming that the twa branches follow the
same rules of evolution, we can locate Pagel’s analysis and my own in the unit square
depicted in Figure 5. Given the process modet I am using {which entails the backwards in-
equality), only the lower-right half of this square is possible. Every point in that region has
the effect of making C = | more likely than C = 0. There is no need to say which of these
points is most likely.

X0
| e
y
Pr(0~1) S X
yd
o //
0 1
Pr(1~1)
Figure §

Rather than surveying this triangular region, Pagel’s procedure is to focus on a point
and z line that it contains. There is a point where Pr(0— 1} = 1; and there is a line where
Pr(l—1) = 1. This leads Pagel’s procedure to conclude that C = 0 and C = | are equally
likely. (Incidentally, if one assumed that u = v, and took account of the fact that N is finite,
Pagel’s procedure and my own would deliver the same verdict.)

Schiuter er al. (1997), like Pagel, estimate ancestral character states by evaluating
conjunctions of the sort just described, though they endorse a procedure that differs from
Pagel’s. Both use a “best case expedient” for dealing with nuisance parameters; for criti-
cisms, see Sober (1988, pp. 150-635} and Schultz and Churchilt (1999, p. 652).

6. This effect of time on the likelihood reconstruction of ancestral character states is
reflected in the simulations of Martins {1999).

7. However, it is possible that the lineage has a higher probability of reaching 75 if it
starts at 65 than if it starts at 80; suppose there is a strong directional force pushing the
lineage towards a value of 90.

8. Maddison (1991} showed that squared change is the appropriate criterion under a
Brownian motion-drift modet.
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9. These theorems about quantitative characters agree with the simulations performed
by Martins (1999), who found that squared parsimony and likelihood both do well (and
agree with each other) when there is a Brownian motion process, but tend to diverge under
evolution towards a stable attractor, as in an Ornstein-Uhlenbeck process.

10. Ridley (1983) recommends the use of cladistic parsimony to reconstruct character
states of ancestors; he further recommends that the implied changes in character state that
occur in the tree’s interior be regarded as the only evidence that allows one to test an
adaptive hypothesis; the fact that character states are sometimes retained in a lineage
should be viewed as evidentially meaningless. Ridley says that this methodology biases
the case against the adaptive hypothesis; he defends it on the ground that if an adaptive hy-
pothesis can receive confirmation even when the deck is stacked against it, that this is
strong evidence indeed in favor of that hypothesis.

In fact, Ridley’s procedure does not always have the effect of biasing the case
against the adaptive hypothesis. Consider, for example, the adaptive hypothesis that says
that tooth shape (sharp or flat) is an adaptive response to dietary regime (carnivore or
herbivore). I take it that this hypothesis predicts that changes from CF to CS should occur
more often than changes in the opposite direction, and that changes from HS to HF should
occur more often than changes in the opposite direction. Now consider the tree depicted in
Figure 6. The most parsimonious assignment of character states to ancestors is 1 = CS, 2
= CF, and 3 = CF. This has the consequence that there was one change from CF to CS and
no changes in the opposite direction, a result that conforms to the predictions of the
adaptive hypothesis. However, consider the unparsimonious assignment 1 = CS§, 2 = CS,
and 3 = CS. This entails that there were two changes from CS to CF and no changes in the
opposite direction, a result that goes contrary to what the adaptive hypothesis predicts.
Thus, it is false that Ridley’s procedure always introduces a bias against the adaptive hy-
pothesis.

Figure 6

Similar problems attach to Ridley’s decision to regard stasis as having no evidential
bearing on the adaptive hypothesis. He claims that this biases the case against the adaptive
hypothesis, but this, too, is not always the case. Consider, for example, the tree in Figure
7. Ridley’s procedure of first using parsimony to reconstruct ancestral character states and
then counting changes as the sole bearers of evidential meaning has the result that one
regards this clade as evidence for the adaptive hypothesis—after all, parsimony says that
there was one change from CF to CS and none in the opposite direction, and changes in
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character state arc the only events that count. However, the question may be asked as to
why CF was retained by so many lineages in the tree. Why isn’t this evidence against the
adaptive hypothesis (on which see Hansen 1997 and Orzack and Sober 2001)7 Ridiey’s
decision to ignore stasis, in this instance, helps the adaptive hypothesis.

¢ <€ ¢ ¢ ¢ ¢ ¢
S F F F F F F

Figure 7

My conclusion here is not that Ridley's two-part procedure is incorrect, but just that
it cannot be justified in the way he suggests,
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